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ABSTRACT

The Real Time Computer Complex (RTCC), a part of the
Mission Control Center, Houston, is modeled as a set of identical
elements (computers), each with a constant failure rate (1) and
a constant repair rate (u). Application of the theory of finite
Markov processes to this model allows computation of various para-
meters of system behavior as a function of the total number of
system elements, the number of repair crews, and the system
requirements. In addition, the solution of a set of simultaneous
linear differential equations provides the reliability functions
of the system.

For a system of five computers, each having a mean
time to failure of 70 hours, and a mean time to repair of 2 hours,
at least three repair crews, and a worst case system requirement
to simultaneously support two missions, the model predicts: ‘

1. An availlability of greater than 99.99%,
2. A mean time to failure of 9667 hours, and

3. A 'reliability for 50 hours of .9951.
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1100 Seventeenth Street, NW.  Washington, D.C. 20036

suBJECT: Availability and Reliability of Some DATE: December 29, 1967
Models of the RTCC - Case 103

FROM: J. J. Rocchio
TM- 67-1031-2

TECHNICAL MEMORANDUM

I. INTRODUCTION

The Real Time Computer Complex (RTCC), a part of
the Mission Control Center, Houston (MCCH) consists of a
number of digital computers and ancillary equipment organized
to support manned space flight missions. In this memorandum
some simple probabilistic models of this system are analyzed to
provide parameters associated with system availability and
reliability.

The models (described below) are based on the fol-
lowing assumptions:

1. The system consists of N identical machines which
are continuously operating. Each machine is
characterized by an exponential failure law with
mean time between failures of 1/A, and an expo-
nential repair law with mean time to repair of
1/¢. This corresponds to assuming constant fail-
ure and repair rates.

2. A single machine can support any given mission or
mission phase. Two machines are allocated to sup-
port a critical mission phase, one in control and
the other in dynamic standby. In this configura-
tion we assume perfect error detection and instan-
taneous switching so that failures of the primary
machine are not system failures. In addition, we
assume that mission dedicated machines which fail
can be instantaneously replaced (if additional
machines are available) since in practice only
about ten seconds are required to effect this. The
worst case to be considered is the requirement to
support two critical phases. In considering system
availability, we will assume that a machine not in
dynamic standby can take over mission support in a
time governed by an exponential distribution with
mean 1/6 (a mathematical convenience since in reality
this time is probably constant).
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IT. SYSTEM AVAILABILITY

One of the important characteristics of the system
under consideration is the distribution of the number of
machines which will be operating as a function of the failure
and repair time statistics. We consider the system at any
time to be in any one of the N + 1 states SK’ K=20,1, ....N,

where K denotes the number of machines working; i.e., when the
system 1s in state SK,* K machines are operating and N-K have

failed. Depending on the number of repailr crews available,
all or some fraction of the N-K failed machines are in the pro-
cess of being repaired.

The earlier assumptions of constant failure rate
and constant repair rate allow the system to be modeled as a
finite Markov process. Consider that the system is in state
SK. Thenin a small. period of time At it can:

l. remain in state SK;

2. go to state SK+1 if a machine 1s repaired; or

3. go to state SK—l if a machine fails.

With At sufficiently small, these are the only possi-
bilities since the probabilities of multiple failures or repailrs

in a time interval At are of the order of At2 or higher and may
therefore be neglected in a limiting process as At -+ 0.

The behavior of the system may now be described by a
probability transition matrix P, where pij is the probability

that the system, in state i at time t, will go to state j at
time t + At. Assuming N or more repair crews are available,
for state SK(0<K<N) we have:

Pg,ke1 = (N-K) uat

¥The probability that the system is in state SK at time ¢
will be denoted P(SK,t).
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i.e:, the probability that a machine is repaired;

Pg,k-1 - Krat

i.e., the probability that a machine fails; and

Pg,x = 1-L(N-K)u+Ka] at

i.e., the probability that neither a failure nor a repair occurs.
The transition matrix 1s completed by noting that:

pN,N = 1-Naat

pN,N-l = NiAt
and

p0,0 = 1-Nuat

pO,l = NuAt

Figure 1 illustrates the system model.
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If we let the initial state of the system be speci-

fied by a probability vector E(O), then 1t can be shown that
t?e)probability vector characterizing the system after n steps,

n
B

is given by:

It may also be shown that

lim P% = W

n->o

where each row of W is a probability vector w, which satisfies

or
w e+ [P-I] =0

The vector w is called the fixed point of the Markov process and
the elements of w may be interpreted as the equilibrium probabili-
ties of the states of the process.¥

¥See for example Finite Mathematics with BusineSS'Appli-
cations, J. G. Kemeny, et.al, Prentice Hall, 1962.
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Case 1

With N machines and N or more repair crews (the model
of Figure 1), Appendix A shows that the equilibrium probabili-
ties of the states of the system are:

(g)oN-K

<l+p)N

we = 1im P(SK, t) = P(SK) =

>

where p = A/u.

System availability may be defined as the probability
that the system is operating satisfactorily at any point in time.
To relate system availability to the equilibrium probabilities we
must define the system requirements in terms of the number of
machines required. For example, to compute system availability
assuming that at least J of N machines are required for satis-
factory system operation, we get (in equilibrium)

N

—
w

PA(J) = P(SJ) + P(S ) ..+ P(SN) = K

J+1

K=

i.e., PA(J) is just the probability that at least J machines are

operating. Table 1 tabulates these probabilities for some cases
of interest as a function of selected values of p = A/u.

(Note that statistics gathered on RTCC operation through September
1967 indicate that a failure rate (1) of 1/70 failures per hour,
and a repair rate (u) of .5 repairs per hour are representative

of RTCC computers; with these data, the ratio p = A/u is 1/35.

¥A general solution for P(SK, t) may be found in Bellcomm

Memorandum for File, "A Birth-Death Process.,Associated With A
Redundant Repairable System" bv G. M. Anderson, (to be released).

It is shown there that P(SK,t) approaches P(SK), its asymptotic value

with a limiting exponential time constant of 1/(A+p). Thus, after

a period of time equal at most to 3 or 4 times the mean time to
repair (1/u), the system 1s essentially stationary with distribution
Wy s Justifying the use of the latter here.
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N=5 - N=6
J p=1/30 p=1/35 p=1/40 p=1/30 p=1/35 p=1/40
6 . 821405 .8u4487 . 862296
5 .848785 .868615 .883854 .985686 .989256 .991641
4 . 990249 .992703 . 994336 .999376 .999597 . 999725
3 . 999680 .999794 .999860 .999984 . 999991 .999994
2 .999994 .996997 .999998 .999999 .999999 .999999
Probability of Having J Out of N Machines Operating
Table 1
Case 2

The effect of a limited number of repalr crews on the
behavior of the system may be easily accounted for by changing the

probablility transition matrix considered in Case 1.

The general

solution for N machines and M (M<N) repair crews derived in Appen-

dix A ylelds:

NHEE:

alo

Wy

[a] e

s for N-M < K < N

(N-M) !

K! M

N-K-M

Wy

where o is such that

g

s for 0 < K < N=M ;

N-M-1

Z: N) pN—K (N-M)!
M ' N-K-M

%=0 K! M
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Table 2 summarizes the probabilities of at least
J of N machines working, PA(J,M), and shows the effect of

a limited number (M) of repair crews.

N=5
M=1 M=3
J p=1/30 p=1/35 p=1/40 [p=1/30 p=1/35 p=1/40
5 .839444 |.861574 {.878359 | .848783 |.868614 |.883853
ot .979351 |.984656 |.988154 |[.990247 |.992702 {.994335
3 .998006 |.998723 [.999134 |.999678 |.999793 {.999859
2 .999871 |.999929 [.999957 |.999992 |.999996 ].999997
N=6
M=1 M=3
J p=1/30 p=1/35 p=1/40 p=1/30 p=1/35 p=1/40
6 .807589 | .834048 |.854136 r.821400 .844485 | .862295
5 .969107 | .977028 |.982257 |.985680 | .989253 | .991639
4 0996027 { .997453 }.998272 |.999370 | .999594 | .999723
3 .999616 | .999788 |.999873 [1.999979 | .999988 | .999993
2 .999975 | .999988 |.999993 [.999999 { .999999 | .999999
Probability of Having J of N Machines Operating, Given M
(M<N) Repair Crews
Table 2
Case 3

The previous model, which predicts the relative fre-
quency of the varlous system states, does not reflect the
RTCC requirement to simultaneously support two critical mission
phases. Thils situation requires the use of a pair of machines
on each phase, one in control and one in dynamic standby. Consider
the configuration of the system when only three machlnes are operat-
ing. 1In this case, only one mission, call it mission A, can be
supported by a aynamlc standby machine. Thus, if a fallure occurs
in either of the machines supporting mission A, the system is still
in a satisfactory state; but if the machine supporting mission B
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fails, the system has failed. This may be modeled by splitting
the state 82 into two states, S21 and 822. In 821 we assume

that each machine is supporting a different mission so that this
is a success state for the system, whereas 822 corresponds to

the case where both operating machines are supporting the same
mission and the system has therefore failed. Figure 2 shows the
system model and transition probabilities.

The equilibrium probabilities in this case are shown
in Appendix A to be the same as in the previous model for the
states Si’ i# 2. In addition, it is shown that

wop towyy = wy

which merely states that the total probability of having two

machines operating is not changed by the splitting of state 82

into two states.

It is further shown that

‘Aw3
22 + ap ?

P

where

min [N-2,M],

Q
"

with N and M as previously defined.

. This result now allows computation of the RTCC system
availability to simultaneously support two critical mission phases
as

P, =1 - P(S22) - P(Sl) - P(SO) = l-[m22+wl+wO]

A

This probability i1s tabulated below as a function of N, the number
of machines and M, the number of repair crews for some cases of
interest.
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No. of Total Number of Machines

Repair

Crews N=5 N=6
M p=1/30 p=1/35 p=1/40 p=1/30 p=1/35 p=1/40
i .999291 | .999548| .999696 .999863 |.999925 }.999955
2 .999832| .999892| .999927 .999983 [.999991 |.999994
3 .999890| .999929| .999952 .999992 (.999996 {.999997
4 .999892| .999930{ .999952 .999994 1.999997 |.999998
5 .999892( .999930| .999952 .999994 1.999997 {.999998
6 .999892| .999930| .999952 .999994 1.999997 |.999998

System Availability'(PA) for Two Critical Missions

Table 3

As a point of interpretation, note that with one repair
crew, the likelihood of the system being down with this model
is 5-6 times that of a system which requires any two machines
working. With more than one repair crew, this ratio increases.
Note also that the gain in system availability per added repalr:
crew decreases markedly after the first increment.

Case 4

The model of Case 3 must be slightly refined to reflect

realistically the operating characteristics of the RTCC. Con-
sider the situation when the system is in state 822. As pre-

viously defined,; in this state two machines are up, but both

are assigned to a single mission. Clearly, in this situation

the system would be reconfigured, and one of the machines would be
switched to support the other mission. During this reconfiguration
time, the system is, of course, in a failed state. The modifica-
tion of the system model to account for this refinement is shown

in Figure 3. Assuming that the switch-over time 1is exponentially
distributed with mean 1/§ rather than a constant allows the follow-
ing result:

Aw3

21 +au +8

Wop 7

as shown in Appendix A. Table 4 shows system availabilities in
this case where it has been assumed that 1/6 = 5 min.
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No. of Total Number

Repair of Machines

Crews N=5 N=6
M p=1/35 p=1/35
1 .999913 .999985
2 .999983 .999998
3 .999988 +999998
b .999989 -999999
5 999989 .999999
6 .999989 +999999

System Availability for Two Critical Phases (PA)

Table 4

Note that the likelihood of the system being down 1is
reduced by a factor of at least 6 when switchover from state
822 to 821 is accounted for.

ITTI. RELIABILITY ,

The previous results concern aspects of system avail-
ability or the long term steady-state probabilities of various
system states. 1In this section, we will consider aspects con-
nected with system reliability R(t), where we define rellability
as the probability that the system will functlon satisfactorily
for a given period of time. Derivation of the system reliability
function involves the solution of a set of simultaneous linear
differential equations (see Appendix C). But a parameter of this
function, the mean time to failure (MTF) defined by:

MTF =jf R(t)dt s
0

can be found by application of theory of Markov processes with
absorbing barriers. In addition to the intrinsic value of the
MTF as an evaluation index of the system design, the results of
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Appendix C suggest that for values of A and uy of interest here
(A << u), R(t) may be closely approximated by:

R(t) = o~ b/MIF

A. Mean Time tc System Failure

To compute the MTF, we change the system model by mak-
ing those states which are associated with system failure absorb-
ing barriers. This means that whenever the system enters such a
state it remains there with probability 1, and is thus trapped.
This device allows the computation of the mean time to enter all
such states starting from some given initial state which is
exactly the desired MTF or mean time to system failure. The
system model in this case is shown in Figure 4.

The probability transition matrix for any Markov chain
with n states and r absorbing barriers can be put into the
following standard form:

where I is an r byr identity matrix, R is an n-r by r matrix, and
Q@ is an n-r by n-r matrix. It may be shown¥* that the matrix H
defined by

H= (I-Q)7F

called the fundamental matrix of the absorbing chain, has elements
n.. such that n.. 1s the mean number of times the process 1s in

~J .th =

the j

started in the 1

non-absorbing state before absorptionoccurs, given that it

th state. The sum

1J

*¥See Appendix B.
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is then the mean number of times in any non-absorbing state for
the ith starting state and may therefore be related to the
system MTF associated with the ith initial state.

To illustrate the functional dependence of the MTF on

the failure rate A and the repair rate u, the system MTF is
derived parametrically in Appendix B for N=5, M>3 to be

MTF = 13&13 + 113A2u + 37Au2 + 6u3
60x3[2x + ul

when the system starts with all 5 machines initially operating.

The MTF for a number of other cases were produced by
computer program which numerically inverted the matrix H using
1/2=70 hours for the RTCC mean time to failure experience and
1/u=2 hours for the mean time to repair experience. These re-
sults are tabulated in Table 5. Notice that the largest
inecrement in reliability is between having one and two repair
crews, as was true for the availability.

No. of Repair N=5 N=6
Crews M MTF MTF
1 Lheul 28,021
2 9506 114,037
3 9667 159,951
4 or more 9667 174,572

Mean Time to System Failure (hours)
Table 5

The effect of the initial state on the MTF is also
available from H as noted above. Table 6 shows the influence
of the initial state to be small for the particular failure and
repair time statistics used.
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N=5, M>3 N=6, M>4
Initial No. of
Working Machines MTF MTF

6 174,572
5 9667 174,560
! 9653 174,064
3 9513 172,773
2 9338 170,340

Mean Time to System Failure (hours)
Table 6

B. System Reliability

The reliability of the RTCC with respect to supporting
two critical mission phases, as modeled in Figure 4, is derived
in Appendix C to be:

R(t) = 1.0003e-t’/9667 hrs _ -3843-10—3e-t/1'93 hrs

6 -t/.621 hrs

~t/.936 hrs | ggs9.7076c

+ .8806-10'”e

for N=5, M=3.

This function is tabulated below at some selected values

of t, along with the values of RT(t), which is R(t) truncated to

just the dominant first term,and the approximation R(t)=e_t/MTF.
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t(hours)  R(%) RY(t) ¢~ E/MTF
. 999993 1.000191 .999896

5 .999749 999777 .999483

10 .999258 .999260 .998966
20 .998227 .998227  .997933
30 .997195 .997195 .996900
4o .996164 .996164 .995871
50 .995134 .9951314 994842
100 .990000 .990000 .989711
1000 .901989 .901989 .901750
9700 .366723 - .366723  .366724

System Reliability R(t) and Two
Approximations for R(t)

Table 7

Note that the approximation R(t) =~ e-t/MTF is conservative out
to the system mean time to failure [i.e., lies below the true
reliability function R(t)]. This aspect is elaborated on in
Appendix C.

Figure 5 shows the system reliability R(t) associated
with the model of Figure 4 with the total number of machines N
varying from N=2 to N=5. The explicit expressions for the
reliability functions in these cases are given in Appendix C.

IV. SUMMARY

" The RTCC has been modeled as a system of identical
parallel redundant elements, having exponential failure and
repair distributions. General results are obtained for the
availability of an arbitrary number (K) out of the total number
(N) of system elements with an arbitrary number (M) of repair
crews. In addition, general results are obtained for the system
availability when a worst case requirement of the simultaneous
support of two critical mission phases is assumed. With this
system requirement, a general technique for computing the system
mean time to failure is illustrated, and the explicit system
reliability function for several cases of interest is found.
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Using the system parameters characteristic of the RTCC,
with a total of five machines and at least five repair crews the
model predicts that all five machines will be operating greater
than 86% of the time and four or more machines will operate
greater than 99% of the time. In addition, on a system basis,
for five machines and three or more repailr crews the model
predicts:

1. A system availability greater than 99.99%;
2. A mean time to system failure of 9667 hours; and
3. A fifty hour reliability greater than .9951.

The principal deficiency of the model lies in the
absence of consideration of periodic maintenance. However,
since this activity is subject to schedule, and since switch-
over to an active role will be rapid if required., the effect
of periodic maintenance on the results obtained here should

be small. 3
C‘:f%? /(ftc465

1031-JJR-jdc - J. J. Roechio

Attachments

Appendices A, B and C

Figures 1-5
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APPENDIX A

System Availability - The Markov Model
With Reflecting Barriers

To calculate system availability or the probability of
having at least a given number of machines working, the system
is modeled as a Markov chain with reflecting barriers as shown
in Figure 1. A Markov chain of this type is characterized by
its probability transition matrix P where pij is the probability

of going from state Si to state Sj' The matrix P applicable to

the system with N machines and N or more repair crews may be
written by inspection from Figure 1 as:

[(1-Nuat  Nuat 0 ceo 0 ]
AAT 1-[(N-1)p (N-1)uat se 0
+2]At
0 2 At 1-[(N=2)u =~ 0
+2r1]At
P-|: : s :
2udt 0
0 0 0 (N=1)rat 1-[u+(N-1)rJAt uAt
Lp 0 0 .. 0 NAAL 1-N1At)

(0)

probabilities, i.e., péo) is the probability that the system

Let the row vector p characterize the initial state

starts in state Si’ It may be shown that:

E(l) = E(O)P 5 _ (A-1)
and in general that:
p(m) = plo=llp (a-2)
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Appendix A (contd.)

Using (A-1) recursively it is clear that (A-2) may be rewritten:

(n) _ R(O)Pn ;

R (A-3)

which says that the probabilities of being in each state after
n steps of the process are given by the product of the initial

probability vector and the n:c-E power of the probability transi-
tion matrix.

Now consider a probability vector w such that

wP = w (A-1)

(0)

and assume that w was chosen for p s then

p™ = = w=p®

or the probability of being in any given state remains constant
at all steps of the process. Inthis case the process is said

to be in equilibrium and the vector w is called the fixed point
of the matrix P. The components of w give the equilibrium prob-
abilities of state occupancy for the process and these are what
is desired for computation of system availability. It can be
shown¥* for example that under certain conditions

1im p_(n) = p_(O)Pn =
N>

(0).

for any 5 therefore after a large number of steps the
probability of the process being in state Sj is close to wj no

matter what the starting state of the system is.

From (A-4) the fixed point probabilities of the system
satisfy:

w + [P-1] = 0 | (A-5)

¥See Finite Mathematics with Business Application, J, G.
Kemeny et al., Prentice Hall, 1962.
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Appendix A (contd.)

and since w is a probability vector

N
Z 0, =1 (A-6)

i=0

If the system of equations (A-5) is solvable, for
other than the trivial case w = 0, it has an infinite number
of solutions, only one of which will also satisfy (A-6). From
the matrix P and (A-5) we may write:

Numon— Awl =0

-Nuwo + [(N—l)u+k]w1 - 2Aw2 =0

-2uwN_2 + [u+(N—1)X]mN_l - NAwN =0

+ NAwN =0

THON-
These equations may be manipulated into the following form
starting from the last one:

Adding the last two equations gives:

N-1

= =W

oy - ﬁ (N—l)N (x)

N-1
and repeating this process gives in general:

_N-K#1 A - | )HNKN
YN-K =~ T K ¥ 'N-K+1 N-KI{% N
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Appendix A (contd.)

Substituting these results into (A-6) gives:

o 3G -

or
1

N
(1+%)

“N

Thus the desired result is:

EET

[1+2) ey

wK (A-7)

The effect on the equilibrium state occupancy probabil-
ities w due to the number of available repair crews may be
obtained from a similar argument. Let M, 1 < M < N be the number
of repair crews available to the system. We must consider the
effect on the transition matrix P which we now denote by P(M).

If we denote a row of P by fﬁ, then it is clear that

_EJ' = E_(M)j

for

Jj > N-M

which corresponds to the fact that when M or less machines are
failed, the transition probabilities are the same whether we
have M, N or more repair crews since the surplus crews must be
idle. Now for j < N-M a transition probability of the form:

Py 41 = (N=-j)urt
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Appendix A (contd.)

becomes
p(M)J,j+1 = MuAt ;
and
p. . = 1 = [(N=-J)uat + jrat]
Jdsd
becomes

p(M)j j = 1 - [Muat + jaat]
bl

With these observations‘the set of equations:
w[P(M)-I] =0
may be written as:
Muwo - le =0

—Muwo + [Mu+A]wl - 2Aw2 = 0

- (N-M+1))w =0

+ [Mu+(N-M)2rJw N-M+1

~Muwy_ym_q N-M

“Muwyg_y + [(M-1)u + [N—(M-l)A]wN_M+1 - (N-M+2)hwy_yio =

—2uwN_2 + [u+(N—l)l]wN_1 - NAmN =0

+ Nawy = O

“HON1 N
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Appendix A (contd.)

Proceeding as before we get

_ 2
“N-2 T (Nzl) % -1 T (N§2,(%,

wpn = S R, = AT
or in general
=(II\{IH%)N— we , for N-M <K <N

o = éﬁﬁ?" ( )% ) , for 0 <K < N-M .

Therefore

L5 e g b

K=N-M K=0 Kt

Hence, the desired result is

e
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and
—M)!
e (MH)
Wp = for 0 < K <N=-M s
where
N N—K N-M-1
° = ZM(QH%) ¥ ZO %(M)(}
K=N- K= '

Having obtained the equilibrium probabilities of state
occupancy for the general model with an arbitrary number of
repair crews, we are in a position to investigate the models of
Figures 2 and 3 which are applicable to the RTCC.

The method of solution in these cases proceeds exactly
as above, however the splitting of state 82 into two states 821
and 822 as shown in the state diagrams adds an additional row
and column to the transition matrix. Previously we had:

p2’1 = 2AAL
Py p=1- [(N-2)u+2r]at
p2,3 = (N-2)uAt

In the transition matrix applicable to the system of Figure 2,
P' we have

' = 2:At
P 21,1

' - - -
p 21,21 1 [(N 2)u+2)\]At
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Appendix A (contd.)

P'yy,3 = (N=2)uat

p‘22,1 2AAT

p'22,22 =1 - [(N=-2)u+2xr]at

p'22,3 = (N-2)uat
In addition, whereas

p3’2 = 3XAt
we now have

p'3’21 = 2aAt
and

p'3,22 = AAt

From the system of equations

w » [P" - I]1=0 (A-8)
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Appendix A (contd.)

it can be shown that

[(N—2)u+2k]w22 - Aw3 = 0
or
Aw3
Yoo = TN=Z)u¥2X (A-9)

Also by examination of the set of equations of (A-8) compared
with those of (A-5) we can show that the substitution

+ w =

Woo 21 ~ Y

reduces (A-8) to (A-5), therefore leaving the equilibrium proba-
bilities for states other than S2 unchanged. Thus the previous

solution (A-7), plus equations (A-9) and (A-10) provide the
equilibrium probabilities for the model of Figure 2.

In the general case with M repair crews (A-9) becomes

_ Aes

Woo ~ aut+2A

where

o = min[N-2,M]

The results applicable to the model of Figure 3 are
very similar to the above. The governing equation for Wy in
this case becomes



BELLCOMM, INC. - 10 -

Avpendix A (contd.)

[au+2k+6]w22 - Xw3

or
AW
® =-———ii——
22 au+2r+s ?

with all other relations unchanged.

=0
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APPENDIX B

System Reliability - The Markov Model
With Absorbing Barriers

Consideration of the Markov chain of Figure U4 allows
computation of the mean time to system failure. In this model

the system down states S1 and 822 are made absorbing barriers

and we are interested in the mean time to absorption. Due to
algebraic complexity, closed form solutions for the general

case were not derived. A parametric solution for one case

will be derived below. The results presented in the body of

the memorandum were computed by numerical techniques and involve
the inversion of a relatively sparse matrix.

In generél, the probability transition matrix of an
absorbing Markov chain may be written in the standard form:

I 0
(B-1)

av]
I

R Q

if the states are ordered with the absorbing states first. With
P in the above form it is easily shown that P" is of the form:

Pl = (B-2)

where ¥ refers to an unspecified submatrix.

We are interested in the mean number of times (nij)
the process is in state Sj’ given it starts in state Si’ where

i and j are nonabsorbing states. Since the probability of
eventual absorption is one, we assume the means exist. Let
Xij(k) be a random variable such that

1 if the process is in state
j at step k given that it
xij(k) = started in state 1i;

0 otherwise.
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Appendix B (contd.)

Let

515 = 52 X500,
K=0

i.e., Sij is the total number of times the process is in state
Sj given that it started in state Si'
Now

ﬂij ‘= -S—i-J—' = Z Xij(k) = Z Xij(kj s (B_3)
k=0 k=0

but

= ok
x;;(K) =@ ) .

where Q is defined by (B-1).

Therefore, writing (B-3) in matrix form we have:

H=lng,1=T+Q+0Q%+ o = (I-9)7"

Hence, the elements of (I—Q)"1 are the mean number of steps in
each nonabsorbing state for each possible nonabsorbing starting
state. Thus the row sums of H

give the mean number of steps to absorption for starting state
Si' |

An example will illustrate the computational procedure.
The transition matrix P for the Markov chain of Figure 4 for
five machines (N=5) is:
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States 1 22 21 3 4 5

1 1 0 0 0 0 0
22 0 1 0 0 0 0
P = 21 2AAt 0 1-(2x+3u)At 3uAt 0 0
3 0 AAL 2 At 1-(3x+2u)At 2uAt 0
b 0o 0 0 haat 1-(4r+p) At uAt
5 0 0 0 0 5xAt 1-51At

From P it is easily seen that

22+3u -3y 0 0

-2 3x+2u -2u 0

-Q = At | g “4n ba#p -y
0 0 =-5x 5x

After algebraic manipulation it can be shown that:

(6023 6022y 30Au° 6u3
3 2 2 2

_ -1_ 1 j4o0r” 20a°(2a+3u) 10Aa(2ap+3u7) 2u“(2r+3u)
H=(I-Q) =1tD

uox3 20x2(2x+3u) 5x(6x2+7xu+6u2) 6A2u+7xu2+6u3

_40x3 20A2(2A+3u) 5A(6A2+7Au+6u2) 24A3+18A2u+7xu2+6u3

.

where

D = 60A3[2A+u]
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Appendix B (contd.)

Since each step of the Markov process take At units of time, Ty

the mean time to system failure starting from state Si’ is given
by

T3 = At’I‘:.L = Atz "ij
: J

or for the case above

- 13423411322 +3720%4603
> 60A3[22+u]

the mean time to system failure starting with all machines
working.
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APPENDIX C

System Reliability - Solution of the

Set of Differential Equations

Consider the system model illustrated by Figure 4.
The system reliability R(t) is the probability that the sys-
tem operates satisfactorily for t units of time. Since this
function will depend on the state of the system at t=0 we
should write R(t,j) as the reliability of the system given
that at t=0 the system is in state Sj' Let the probability

that the system is in state Si at time t, given that it
started in state Sj! be P,(t,j). We may then write:

R(t,j) = 1 - [Pl(t3j) + P22(t:j)] . (C—l)

Rather than carry the notation of the starting state, we will
assume from now on that the system starts with all machines
working. Thus C-1 becomes

R(t) = 1 - [?l(t) + P22ctﬂ’

Since we are not interested in distinguishing the states S1
and 822, they may be combined into a single system failed state
Sy for which

Pe(t) = Pl(t) + P22(t)
and therefore

R(t) = 1 - Pg(t) (C-2)
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Appendix C (Contd.)

It

satisfy a set
which for the
three or more

may be shown¥* that the

of simultaneous linear
model of Figure 4 with
repair crews (M>3) are

state probabilities Pi(t)

differential equations,
five machines (N=5) and
given below:

P5'(t} = -5xP5(t) + uPy (t)

P,'(t) = 5xP5(t) = (ha+u)Py(£) + 2uP5(t)
Pyt (t) = WPy (t) - (3A+2u)P3(t) + 3uP, (t)
Pyt (t) = 2AP3(t) - (22+3u)P, (%)

Py'(t) = AP3(t) + 2AP,(t)

where Pi'(t) denotes the time derivative of Pi(t).

Taking Laplace transforms of these equations with
P5(O) = 1 as an initial condition yields the following relation

in matrix form:

M(s) - L(s) =¢

with
B !
s+52 -y 0 0 0
-5 Ur+u+s -2u 0 0
M(s) = 0 ISY 3A+2u+s -3u 0 ;
0 0 =2A 2A+3u+s 0
L.O 0 -2 =2A S_‘
— R ~
L5(S) 1
Lu(s) 0
L(s) = Ly(s) H §= 1[0 3 and L, (s) = LIP;(t)]
Ly(s) 0
\_L*(S)_J L.O-J

¥See for example "The Reliability of Some Simple Redundant,
Repairable Systems," Bellcomm Technical Memorandum, TM-64-2131-1,
January 28, 1964, by I. D. Nehama.
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This system may be solved for the transforms Li(s)

using standard matrix techniques. After considerable algebra
one obtains:

L(s) = g%g%
where
A(s) = 20A3(s+63+30u)
B(s) = s[s +(1Ua+6u)s3 + (71A2+49ru+11u2)s2

4602347

-+

(15ux3+113x2u+37xu2+6u3)s + 1202
Now equation C-2 may be written
R(t) = 1 - L'ltL*(s)]

The inverse transform of L,(s), i.e., P,(t) may be found by a
partial fraction expansion of L(s):

_A(s) _ A(s)
Ly(s) = BlsY S(S_sl)(s_sgj(s—s3)(s—su7

KO Kl K2 K3 KU

= ¥ (s - sl) R 557 + (s - 53) * (s - 5)

As

we may write R(t) directly (assuming real, distinct roots for
B(s)) as:

slt 85

!
R(t) = - 1Kle + Kye + K

s,t st
37 4 K, B o3

38

As the roots of B(s) are very difficult to obtain
algebraically, they were obtained numerically using the values
characteristic of the RTCC namely, a mean time to failure (1/X)
of 70 hours and a mean time to repair (1/u) of 2 hours. The
solution yields the parameters of equation C-3 as:
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K, =-1.000295 1

3 5, = —0.1031448-10_3 hrs”
K, = 0.384316-107> ; s, = -0.518470 hrs™"
K3 =—o.880612-1o'2 ; s, = -1.069435 hrs~t

3
K, ==0.993931:10™° ; s = -1.611992 hrs™'

Let the reliability function for the model of
Figure 4 for arbitrary N be denoted as R(t,N). If the roots
of the characteristic equation

| M(s) | =0
are real, negative and distinct we may write
N-1 s,t
R(t,N) = L. Kge (C-l)
’ i=1

Solutions for R(t,N) for N = 2, 3, and 4 have been found
in addition to the solution for N = 5 given above. For N = 2,
virtually by inspection,

R(t,2) = e 2P,

For N = 3 and 4, the parameters applicable to Equation (C-4)
are given in Table Cl below. ‘

N = 3 N = 4
K, 1.0014 1.0028
K, ~0.140+107° ~0.276-1072
K, 0.193:107°
N ~0.1504-107% nrs™t  -0.1506-107° nrs~t
s, ~0.5564 hrs™t ~0.5428 hrs™t
55 ~1.0842 hrs™t

Parameters of R(t,N) (Eq. C-4) for N = 3 and 4;
1/» = 70 failures/hour, and 1/u = 2 repairs/hour

Table C-1



BELLCOMM, INC.

From the structure of M(s) we observe

Lim | M(s) | = 8% (s + 1) (5 + 2u)....(s + (N=2) u)
A=+>0

which suggests that if the spectral sequence of Equation C-1U
( {si}) is placed in numerically decending order, i.e.,

{s;} = S15 > S5 Z....> Sg g

it will be asymptotic to the sequence
Os =, -QU,---, ”(N-z) H

as A»0. From this result, and the cases considered above
we conjecture that in general (for A << u), R(t,N) is
dominated by the first term of (C-4), and may be approximated

by

R(t,N) ~ (1L + 6§) e 51 (N) b s<<1 (C-5)
and therefore that
51 (N) ~ 1/MTF (N) (C-6)

This suggests that a useful approximation to
R(t,N) for A<<y and any N is

RY (t,N) = e ~E/MIF (N) (c-7)

i.e., the system behaves as though it consisted of a single
element with the appropriate MTF. Moreover, it can be shown
from the form of the Laplace transform of R(t,N) that:

*
R(t,N) > R (t,N) for N>U4,

lg=0+ le=0+
Also from (C-5) and (C-6) it can be shown that

R(t,N) = R¥(t,N) at t ~ NTF.
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Thus, with the assumptions made, R¥(t,N) provides a lower bound
to the system reliability over the range 0 < t < ~MTF, and
requires only computation of the system MTF.
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FIGURE 5 - RTCC RELIABILITY (R(t)) FOR SIMULTANEOUS SUPPORT
OF TWO CRITICAL MISSION PHASES



